This document describes the following:

- A correction to Algorithm 1 ٠
- An example to demonstrate the incompleteness of the approach outlined in the • manuscript

1 Erratum

The corrected version of Algorithm 1 in the manuscript is as below:

Algorithm 1 Separating into equicontrollable Classes

```
Input: • Environmental Behavior \varphi^{e}, System safety/transition rules \rho^{a}.
```

- Specification ξ representing the set of states to be separated ($[\![\xi]\!]$).
- BDD ρ^{reach} representing the set of reachable states for the system.
 Set of propositions X ⊆ AP over which the states must be partitioned and the map f_{param}.

Output: • Equicontrollable classes $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_k$ s.t. $\alpha_i \cap \alpha_j = \emptyset$ for $i \neq j$, $\bigcup_{l=1}^k \alpha_l = [[\xi]]$.

1: Define
$$\varphi_{\xi}^{\text{param}} := \varphi^{e} \rightarrow \Box \rho^{a} \land \diamondsuit \left(\xi \land \bigwedge_{t \in \mathscr{X}} (t \leftrightarrow f_{\text{param}}(t)) \right)$$

2: Compute winning states $(W_{\varphi_{\xi}^{\text{param}}})$ for $\varphi_{\xi}^{\text{param}}$
3: Equicontrollable Classes = \emptyset
4: for $x \subseteq \mathscr{X}$ do
5: $t_{1} = f_{\text{param}}^{-1}(x)$; EquivFlag = 0
6: for $p \in \text{Equicontrollable Classes do}$
7: $t_{2} = f_{\text{param}}(x)$
8: if $\left(\exists s.s|_{\mathscr{X}} = x \land (s, t_{2}) \in W_{\varphi_{\xi}^{\text{param}}} \land \exists s.s|_{\mathscr{X}} = p \land (p, t_{1}) \in W_{\varphi_{\xi}^{\text{param}}} \right)$ then
9: EquivFlag = 1
10: end if
11: end for
12: if EquivFlag = 0 and $(\exists s \in \Sigma . s \models \rho^{\text{reach}} \land s|_{\mathscr{X}} = x)$ then
13: Equicontrollable Classes = Equicontrollable Classes $\cup \{s|s \in \Sigma, s|_{\mathscr{X}} = x\}$
14: end if
15: end for
16: return Equicontrollable Classes

2 Appendix

Example to Demonstrate the Incompleteness of the Approach

Let the set of atomic propositions be $AP = \{b, c, d\}$ with $AP_e = \{c\}$ and $AP_a =$ $\{b, d\}.$

Define the transition rule for the environment:

$$(d \to \bigcirc c). \tag{1}$$

Define the transition rule for the controlled agent:

$$\rho^{\mathsf{e}} = \left(\left(\neg c \land (b \lor \neg d) \right) \to \bigcirc \neg (b \lor d) \right).$$
⁽²⁾

Let the initial condition be $\theta = (c \wedge b)$. Consider the following GR(1) synthesis problem.

$$\theta \wedge \Box \rho^{e} \rightarrow \Box \rho^{a} \wedge \Box \diamondsuit b \wedge \Box \diamondsuit d.$$

The winning states for this problem are $\{(b,c,d),(b,c)\}$. From both of these states the agent can pick d and $\neg b$ to hold at the next state, forcing c to hold two instants into the future. When c holds, the agent can pick b satisfying the $\Diamond b$ and then, it is allowed to pick d and $\neg b$ at the next instance and so on, the cycle can continue.

However, when we use the hierarchical approach, we do not obtain a cycle between the liveness guarantees. The controlled agent cannot force the execution to satisfy $\diamond d$ from all states that satisfy *b*. To see this consider the state (b). $\neg (b \lor d)$ has to hold at the next step and if the environment decides to set $\neg c$, $\neg (b \lor d)$ has to again hold at the next instant and this goes on. Hence, though we have a winning strategy, we are not able to find it in the abstracted system, demonstrating the incompleteness of the approach. However, if the partitioning of [[b]] was parameterized over both *b* and *c*, the hierarchical approach would have had a cycle.