This document describes the following:

- A correction to Algorithm 1
- An example to demonstrate the incompleteness of the approach outlined in the manuscript

1 Erratum

The corrected version of Algorithm 1 in the manuscript is as below:

Algorithm 1 Separating into equicontrollable Classes

Input:
- Environmental Behavior ϕ^e, System safety/transition rules ρ^a.
- Specification ξ representing the set of states to be separated ($\llbracket \xi \rrbracket$).
- BDD ρ^{reach} representing the set of reachable states for the system.
- Set of propositions $\mathcal{X} \subseteq AP$ over which the states must be partitioned and the map f_{param}.

Output:
- Equicontrollable classes $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_k$ s.t. $\alpha_i \cap \alpha_j = \emptyset$ for $i \neq j$, $\bigcup_i \alpha_i = \llbracket \xi \rrbracket$.

1. Define $\phi_{\text{param}}^\xi := \phi^e \rightarrow \Box \rho^a \land \bigwedge_{t \in \mathcal{X}} \left(\xi \land \bigwedge_{t \in \mathcal{X}} (t \leftrightarrow f_{\text{param}}(t)) \right)$
2. Compute winning states ($W_{\phi_{\text{param}}^\xi}$) for ϕ_{param}^ξ
3. Equicontrollable Classes $= \emptyset$
4. for $x \subseteq \mathcal{X}$ do
5. $t_1 = f_{\text{param}}^{-1}(x)$; $\text{EquivFlag} = 0$
6. for $p \in \text{Equicontrollable Classes}$ do
7. $t_2 = f_{\text{param}}(p)$
8. if $\exists s, s \in \mathcal{X} \land (s, t_2) \in W_{\phi_{\text{param}}^\xi} \land \exists x, s \in \mathcal{X} \land (p, t_1) \in W_{\phi_{\text{param}}^\xi}$ then
9. $\text{EquivFlag} = 1$
10. end if
11. end for
12. if $\text{EquivFlag} = 0$ and $\exists s \in \mathcal{X} \land \rho^{reach} \land s_x = x$ then
13. Equicontrollable Classes $= \text{Equicontrollable Classes} \cup \{s \mid s \in \mathcal{X} \land s_x = x\}$
14. end if
15. end for
16. return Equicontrollable Classes

2 Appendix

Example to Demonstrate the Incompleteness of the Approach

Let the set of atomic propositions be $AP = \{b, c, d\}$ with $AP_e = \{c\}$ and $AP_a = \{b, d\}$.
Define the transition rule for the environment:

\[(d \rightarrow \bigcirc c). \]

(1)

Define the transition rule for the controlled agent:

\[\rho^e = \left((\neg c \land (b \lor \neg d)) \rightarrow \bigcirc (b \lor d) \right). \]

(2)

Let the initial condition be \(\theta = (c \land b) \). Consider the following GR(1) synthesis problem.

\[\theta \land \Box \rho^e \rightarrow \Box \rho^e \land \Box b \land \Box \bigcirc d. \]

The winning states for this problem are \(\{(b, c, d), (b, c)\} \). From both of these states the agent can pick \(d \) and \(\neg b \) to hold at the next state, forcing \(c \) to hold two instants into the future. When \(c \) holds, the agent can pick \(b \) satisfying the \(\bigcirc b \) and then, it is allowed to pick \(d \) and \(\neg b \) at the next instance and so on, the cycle can continue.

However, when we use the hierarchical approach, we do not obtain a cycle between the liveness guarantees. The controlled agent cannot force the execution to satisfy \(\bigcirc d \) from all states that satisfy \(b \). To see this consider the state \((b) \). \(\neg (b \lor d) \) has to hold at the next step and if the environment decides to set \(\neg c \), \(\neg (b \lor d) \) has to again hold at the next instant and this goes on. Hence, though we have a winning strategy, we are not able to find it in the abstracted system, demonstrating the incompleteness of the approach. However, if the partitioning of \(\llbracket b \rrbracket \) was parameterized over both \(b \) and \(c \), the hierarchical approach would have had a cycle.